Skill Requirements across Firms and Labor Markets: Evidence from Job Postings for Professionals David Deming, Harvard University and National Bureau of Economic Research Lisa B. Kahn, Yale University and National Bureau of Economic Research We study variation in skill demands for professionals across firms and labor markets. We categorize a wide range of keywords found in job ads into 10 general skills. There is substantial variation in these skill requirements, even within narrowly defined occupations. Focusing particularly on cognitive and social skills, we find positive correlations between each skill and external measures of pay and firm performance. We also find evidence of a cognitive social skill complementarity for both outcomes. As a whole, job skills have explanatory power in pay and firm performance regressions beyond what is available in widely used labor market data. #### I. Introduction Wage inequality in the United States has increased markedly over the past few decades. A large literature in economics links rising wage inequality in the United States and other developed countries to technological change, We are grateful to Edward Lazear, Kathryn Shaw, and seminar participants at the American Economic Association 2017 Annual Meeting, the National Bureau of Economic Research, and the Trans Pacific Labor Seminar 2016. We are especially indebted to Brad Hershbein, Dan Restuccia, Jake Sherman, and Bledi Taska for help and provision of the Burning Glass Technologies data. This paper was previously circulated under the title "Firm Heterogeneity in Skill Demands." Contact [Journal of Labor Economics, 2018, vol. 36, no. S1] © 2018 by The University of Chicago. All rights reserved. 0734-306X/2018/36S1-0015\$10.00 Submitted June 3, 2016; Accepted May 11, 2017 S338 Deming/Kahn specifically the computerization of the labor market (e.g., Autor, Levy, and Murnane 2003; Autor, Katz, and Kearney 2008; Acemoglu and Autor 2011; Goos, Manning, and Salomons 2014). This work focuses on changes in relative demand across occupations that differ in the content of the tasks that are typically performed on the job. For example, Autor et al. (2003) show that the falling price of computer capital led to employment and wage reductions in routine task-intensive occupations and increases in cognitive occupations. One empirical limitation in the study of technological change is that existing data sources typically measure variation in workplace tasks across occupations but not within them. This work typically proceeds by linking measures of occupation task content—obtained from such data sources as the Dictionary of Occupational Titles (DOT) or the Occupational Information Network (O*NET)—with employment data. Autor et al. (2003) show that cognitive-intensive occupations, such as being a doctor or lawyer, have become a larger share of the US labor force since the 1970s. This work documents relative employment shifts across occupations but says nothing about whether the tasks performed by doctors and lawyers have changed over time in response to technological change. Yet wage inequality has also increased sharply within occupations in recent decades (e.g., Firpo, Fortin, and Lemieux 2009). Perhaps rising wage inequality across space and over time is linked to changes in task content, even within narrowly defined categories of occupations. In this paper, we study heterogeneity in employer skill demands using a data set of job vacancies that encompasses nearly all jobs posted to an online source in the United States from 2010 to 2015. We restrict our attention to job ads for professional workers because of their likely broader scope for important variation in skill requirements. The data include detailed information about employers' skill requirements for individual jobs, including firm identifiers and other important observable characteristics, such as occupation, industry, and education and experience requirements. The data also include a vast and detailed set of job requirements, ranging from general skills, such as problem solving or negotiation, to specific capabilities, such as proficiency with specialized software (e.g., Java and SQL). Importantly, these data allow us to move beyond the limitations of existing work and ask whether there are labor market returns to skills even within narrowly defined occupation categories. We begin by winnowing down the large variety of keywords and phrases in job vacancy postings into 10 commonly observed and recognizable job skills. Among others, these include cognitive skills, social skills, management, and finance. These skills definitions are motivated by the task litera- the corresponding author, Lisa B. Kahn, at lisa.kahn@yale.edu. Information concerning access to the data used in this paper is available as supplementary material online. ture that ties shifts in relative demand across occupations to technological change. We first show that there is substantial heterogeneity in demand for these skills, even within occupation, industry, and location and when controlling for other characteristics, such as education and experience requirements. We next show that the prevalence of these skills is correlated with proxies for job productivity. Differences in employer skill demands predict occupational wage premia across metropolitan statistical areas (MSAs), even after controlling for a rich set of characteristics. We also show that variation in skill demands is positively correlated with measures of firm performance. Finally, we show that the 10 job skills account for roughly 15% of the variation in our aggregated wage measure across firms. Overall, our results show that the measures of advertised skill requirements found in job vacancy data are important predictors of wage patterns beyond what is available in widely used labor market data. In principle, measures of skill requirements extracted from job vacancy data can be used to study the returns to a variety of skills across occupations, labor markets, and other contexts. Here we focus on just two—cognitive skills and social skills. A large literature shows that the returns to cognitive skills have increased in recent decades, perhaps because computers complement workers performing cognitively complex, abstract tasks (Autor et al. 2003, 2008). More recent work suggests that the return to cognitive skills may be evolving, with important consequences for income inequality. Beaudry, Green, and Sand (2016) show that cognitive jobs as a whole saw little wage or employment growth in the last decade, while researchers instead point to a rising complementarity between cognitive and social skills (Borghans, ter Weel, and Weinberg 2014; Weinberger 2014; Deming 2017). Indeed, social skills may become increasingly important as computers substitute for a wider range of noninteractive tasks (Autor 2014; Lu 2015).1 We highlight cognitive and social skills because of their prominence in this literature linking technological change to wage inequality and because of the sense that they are generally important in a wide range of professional jobs. This focus provides a clear illustration of what can be learned from the skill requirements found in job postings relative to existing data. To understand whether stated preferences for cognitive and social skills are indeed indicative of higher-skilled and more productive jobs, we investigate the relationship between this stated demand and proxies for productivity of workers in the advertised jobs. Because job ads tend not to specify wages (Kuhn and Shen 2013; Marinescu and Wolthoff 2016), we link our data to two external sources measuring wages and performance at aggregated levels. First, we obtain average wages at the location-occupation (MSA by six-digit ¹ For example, advances in automation of some types of cancer diagnoses and treatment, as well as in legal e-discovery, make possible the automation of some aspects of even doctors' and lawyers' jobs (Brynjolfsson and McAfee 2014; Deming 2017). S340 Deming/Kahn Standard Occupational Classification [SOC] occupation) level from the Occupational Employment Statistics (OES) program. Second, we obtain two measures of firm performance: whether the firm posting the add is publicly traded (as proxied by whether we can link the name to a firm in Compustat) and revenue per worker for publicly traded firms. We find that cognitive skill and social skill requirements in job ads positively predict occupational wage differences across local labor markets even after controlling for education and experience requirements, MSA fixed effects, and industry and occupation (six-digit) fixed effects. We also find a positive correlation between demand for both skills and firm performance even after controlling for other skill requirements and the average frequency of firm vacancy postings within locations and occupations. These returns are largely concentrated among ads that post both cognitive and social skill requirements, which is consistent with the complementarity between cognitive skills and social skills found in Weinberger (2014) and Deming (2017). Our results suggest that variation in pay and performance across MSAs and firms may partly reflect differences in skill demands. We estimate that demand for cognitive and social skills accounts for 5% of the variation in firm pay within our detailed set of controls (occupation, industry, education and experience requirements, and the other eight general skill requirements) and for similar fractions of variation in firm performance. Our pay measure masks considerable variation across firms since it is available only at an aggregated MSA-occupation level. We might expect this percentage to be even larger for worker-level pay. Our results are thus consistent with wage inequality across firms being driven in part by differences in skill utilization, perhaps as some firms take better advantage of modern production technologies.
Naturally, we do not observe production technology in our data and cannot rule out that an omitted factor, even within our detailed controls, drives both stated skill demand and outcomes. However, these results are interesting in light of recent research that points to widening pay differentials across firms and across US cities as important contributors to the overall rise in inequality.² We use our short panel to link variation in pay to variation in demand for tasks that are particularly associated with rising inequality over time even though we cannot speak to the time series on rising pay and performance differentials across firms and cities. We therefore provide a specific illustration of how our data can speak to the recent debate in the inequality literature based on the changing demand for cognitive and social skills and the increasing complementarity between them (Weinberger 2014; Deming 2017; Beaudry et al. 2016). ² For research on firms, see other papers in this issue as well as Barth et al. (2016), Card, Heining, and Kline (2013), and Song et al. (2015). For research on geographic sorting and agglomeration economies, see Glaeser and Gottlieb (2009), Moretti (2013), and Diamond (2016). Research on the task content of occupations has furthered our understanding of broad labor market trends in inequality (e.g., Autor et al. 2003; Autor and Dorn 2013) as well as in human capital and worker mobility (Poletaev and Robinson 2008; Gathmann and Schonberg 2010; Speer 2017). Our results show the usefulness of advertised skill requirements in explaining heterogeneity in wages across firms and labor markets, even within narrowly defined occupations. Firm identifiers in our data set allow us to relate internal firm practices (i.e., stated preferences) to performance, yielding additional explanatory power. In that spirit we are related to the important literature measuring and relating management practices to firm performance (Ichniowski, Shaw, and Prennushi 1997; Bloom and Van Reenen 2007). We also join a growing set of papers that use job vacancy data to understand a variety of labor market issues, for example, how and when firms respond to technological change (Hershbein and Kahn 2016), firm preferences for discrimination (Kuhn and Shen 2013), and the general equilibrium effects of unemployment insurance (Marinescu 2017). This paper proceeds as follows. In Section II we describe the data sets and explain how we classify 10 job skills from the thousands of keywords found in the job ads. In Section III we show that these skills have explanatory power in labor market pay and firm performance regressions even within a detailed set of job controls. In Section IV we decompose variation in firm labor market pay and performance into components attributable to subsets of skills measures as well as controls. Section V concludes with a brief discussion of how job vacancy data could be used in the future. #### II. Data # A. Overview Our primary data source is a database of employment vacancies provided by Burning Glass Technologies (hereafter, BG), an employment analytics and labor market information firm. BG examines nearly 40,000 online job boards and company websites, removes duplicates, and parses the ads into a systematic, machine-readable form. It uses the resulting database to create labor market analytic products. BG claims that its database encompasses nearly all jobs posted to an online source during the time period of measurement. The BG micro data were first used by Hershbein and Kahn (2016) to study whether the Great Recession accelerated the adoption of routine-labor-saving technologies. We restrict our attention to ads posted in professional occupations (roughly 60% of all ads).³ This category includes almost all occupations employing ³ Specifically, we restrict to major SOC categories 11–29, which include management, business and financial operations, computer and mathematical, architecture and engineering, the sciences, community and social services, legal, education, arts and entertainment, and healthcare practitioners and technical occupations. S342 Deming/Kahn college-educated workers, and it has the most representative coverage in the BG data (Carnevale, Jayasundera, and Repnikov 2014; Hershbein and Kahn 2016). Furthermore, professional occupations are the focus of the primary debate to which we would like to speak. Focusing on professional occupations, Beaudry et al. (2016) show that occupations requiring cognitive skills saw no employment or wage growth in the 2000s. Deming (2017) instead finds growth in occupations that require both cognitive and social skills, providing evidence for an increasing complementarity precisely across higher-paying occupations. The BG data provide a unique view of the cross-sectional variation in skill requirements within detailed occupations. The large sample sizes allow us to explore heterogeneity in skill demands across cities and firms, with a particular focus on professional occupations. Our resulting data set contains nearly 45 million ads for the years 2010–2015.⁵ The BG data include education and experience requirements, detailed industry and occupation codes (six-digit SOC), the location, the date the ad was posted, and firm identifiers (where available) for each job vacancy. BG also parses the actual text of each job vacancy and codes keywords and phrases as additional job requirements. In our sample, 93% of ads have at least one such requirement and, conditional on having any requirement, post an average of nine. In the next subsection, we describe how we distill more than 10,000 unique keywords and phrases identified by BG into a subset of general "job skills" that could be useful across a wide range of jobs.⁶ We focus on two samples: (1) the full set of professional ads (hereafter, the full sample) and (2) the 63% of ads with a nonmissing firm. The latter sample allows us to estimate heterogeneity in skill requirements across firms. For the firm sample, we further focus our attention on the remaining 96% of ads from firms that have posted at least 10 ads total and ads in at least two different professional occupations and at least two different MSAs over - ⁴ Naturally, data on job ads posted to an online source will not be perfectly representative of all job ads or of employment, even within professional occupations. See Hershbein and Kahn (2016), especially the data appendix, for more detail on sample representativeness, how the BG sample changes over time, and how skill requirements relate to the skills of employed workers. - ⁵ We exclude micropolitan statistical areas from our analysis (roughly 5% of ads), since external data on wages and location characteristics is either unavailable or much less precise. - ⁶ BG cleans and codes the text of job ads into a taxonomy of thousands of unique but standardized requirements. Beginning with a set of predefined possible skills, BG uses machine-learning algorithms to search text in an ad for an indication that the skill is required. For example, for teamwork they search for the keyword "teamwork" but also look for variations, such as "ability to work as a team." - ⁷ Ads that do not contain a firm identifier are typically obtained from recruiter websites, where the poster does not wish to reveal the information. We explore robustness to this sample restriction below. our sample period.⁸ These restrictions help clean out some noise in the firm-level variation in skill requirements that we explore. The resulting database (hereafter, the firm sample) contains nearly 86,000 unique firms. Only 13% of professional ads post the wage that is offered, which prevents us from studying the relationship between skill demands and wages for individual job vacancies. Instead, we use two sources of external data that allow us to relate average skill demands to wages across labor markets and performance across firms. We obtain data on average wages for MSA-occupation (six-digit SOC) cells from the OES program produced by the Bureau of Labor Statistics. The OES is a large survey of nonfarm establishments specially designed to produce data at substate levels. Six percent of job vacancies are posted in MSA-occupation cells that cannot be matched to OES data or have suppressed wage data, likely because they are too small, and these cells were removed from this analysis. We obtain firm performance data from Compustat North America by Standard & Poors. 10 All publicly traded companies are required to track accounting and balance sheet data, making Compustat the most complete database of this information for US firms. We are able to match about 30% of ads in the firm sample to a publicly traded firm in Compustat. 11 Our main firm performance measures are whether the firm is publicly traded, as measured by whether the firm can be linked to Compustat, and, conditional on the link being possible, the firm's revenue per worker. We also obtain MSA demographic characteristics to use as control variables from American Community Survey (ACS) data. Here again we can match all but a small fraction of our sample (making up 3.5% of ads) to the ACS, excluding some small cities.¹² - ⁸ Firms with a very small number of posts likely represent data errors containing fragments of text from the ad that do not correspond to the firm name. - ⁹ It is well known that ads for vacancies rarely post wage offers. See, e.g., Kuhn and Shen (2013) and Marinescu and Wolthoff (2016). - ¹⁰ We obtain these data via Wharton Research Data Services. - ¹¹ After cleaning firm names in both BG and Compustat to remove words like "incorporated" and its associated abbreviations as well as all punctuation, we match on the basis of exact name (75% of matched firms). We then use a fuzzy-match algorithm to link firms with at least a 95% chance of being the same (3% of matched firms). Finally, we match on the basis of a regularized subset of words. Hershbein and Kahn (2016) also use
this match. They point out that total employment in Compustat was 50% of US employment in these sample years, although employment is not collected in a standardized way in Compustat and includes foreign affiliates. - ¹² Demographic controls from the ACS include MSA-level share female, black, Hispanic, Asian, married, and moved in the last year. We also control for education (high school dropouts, exactly high school, some college, exactly BA) and age (less than 18, 19–29, 30–39, 40–49, 50–64) distributions. We set all controls to 0 if the S344 Deming/Kahn Both wages and revenue per worker are available at an annual frequency. However, because the time series in the BG data is fairly short and because job ads likely represent intentions for the flow of new workers while wages and firm performance variables reflect the stock of existing workers, we aggregate all data sources, taking an unweighted average across the years 2010–2015. We thus restrict our attention to cross-sectional relationships between average skill requirements at the MSA-occupation or firm level and wages or firm performance. This aggregation has the advantage of smoothing out time variation in skill requirements driven by factors outside the scope of this analysis, such as labor supply shocks or labor market conditions.¹³ Table A1 in the appendix provides summary statistics for ads in the full sample (panel A), the firm sample (panel B), and the Compustat-matched sample (panel C). The full sample has coverage in 56,611 MSA-occupation (six-digit SOC) cells, containing an average of nearly 800 ads, although there is a wide range. The ad-weighted average wage is \$42 per hour in our sample of professional occupations. The firm sample (panel B) contains nearly 86,000 firms posting an average of 301 ads, each again with a wide range. The average ad is from a firm that posts in roughly 100 occupations (of 352) and roughly 100 MSAs (of 371). This sample has coverage across nearly as many MSA-occupation cells as the full sample (55,241), although with typically fewer ads per cell. Panel C shows that the 3,622 firms that can be matched to Compustat are bigger. They post an average of 2,138 ads across a larger number of MSAs and occupations. They still have coverage in more than 45,000 MSA-occupation cells, with an average of 173 ads per cell. The average ad is posted to a firm with roughly half a million dollars in revenue per worker, and they pay slightly more for professional workers (\$44 per hour). # B. Job Skills in the BG Data One contribution of this paper is to distill and analyze the keywords and phrases coded from the open text of ads in the BG data. But BG also codes the more standard skill measures, education and experience. From table A1, 59% of professional ads specify an education requirement that averages 15.7 years of school (fitting modal years to degree requirements). Fifty-eight percent of ads specify a requirement for experience in the field that averages 4 years. The propensity to specify these requirements is higher in the firm sample and even higher in the Compustat-matched sample. Interestingly, MSA did not match and include a dummy for whether the MSA matched to ACS data. ¹³ Hershbein and Kahn (2016) show a persistent shift in skill requirements in MSAs hit harder by the Great Recession that is consistent with an increased adoption of routine-labor-saving technologies. Modestino, Shoag, and Ballance (2016) show that skill requirements are responsive to a labor supply shock: returning US troops from Iraq and Afghanistan. Hershbein and Kahn (2016) show that average education requirements in BG align well with the education levels of employed workers at the occupation and MSA levels. This shows that, for the most part, firms continue to specify skill requirements, even for high-skilled jobs where an education requirement might be assumed.¹⁴ Figure 1 provides some intuition for the relationship between education requirements and earnings among professional occupations. We plot demeaned hourly wages (dark gray bars) from the OES ordered by their city wage rank for the 50 largest MSAs in terms of employment in professional occupations (according to the OES). Wage bars are followed by the corresponding demeaned years of schooling required for job vacancies posted in that same MSA in the full sample. As figure 1 shows clearly, average wages (from the OES data) and average years of schooling required (from the BG data) are strongly correlated (about 0.84 when weighted by MSA employment). This correlation is reassuring that the BG data generally preserve the ranking of labor markets by skill. We next explain how we make sense of the keywords and phrases coded by BG. Using the more than 10,000 unique fields as our starting point, we create 10 categories of job skills that could be useful across a wide range of jobs. Table 1 lists the 10 skills and provides the corresponding words and phrases that fall into each category. We code an ad as having a particular job skill requirement if it has at least one of the keywords or phrases listed, although it may have many. The skills are mutually exclusive but not collectively exhaustive—indeed, there are many other categories of job skills that one could study.¹⁵ The first two skills listed in table 1 are "cognitive" and "social." Job vacancies that require cognitive skills ask for keywords and phrases such as "problem solving," "research," and "analytical." We chose these skills deliberately to match the description of the "nonroutine analytical" job tasks used in Autor et al. (2003) and other related work. We group keywords such as "communication," "teamwork," and "collaboration" under the heading of "social skills," following closely the definition used in Deming (2017). For both cognitive and social skills, we check each key phrase to ensure that its prevalence corresponds with occupations that the previous literature tends to classify as cognitive or social.¹⁶ ¹⁴ For example, most ads posted on the Job Openings in Economics website specify a PhD requirement. ¹⁵ Examples range from skills that are particularly useful in certain jobs (e.g., plumbing) to business processes (e.g., Six Sigma) to very general attributes that are hard to categorize (e.g., quick learner). ¹⁶ Specifically, at the occupation level we find that the share of ads containing a given keyword is positively related to an index score for how cognitive or social the occupation is. Index scores are based on O*NET 18.1 and stem from measures used in Deming (2017) based on an earlier time period. Hershbein and Kahn (2016) also follow this approach. Fig. 1.—Wages and education requirements by city wage rank. Dark gray bars show metropolitan statistical area (MSA) average wages for professional occupations, obtained from the Occupational Employment Statistics for 2010 to 2015. Light gray bars show MSA average years of schooling required in Burning Glass Technologies job ads from 2010 to 2015, conditional on having any stated requirement. The chart includes the top 50 MSAs (in terms of employment in professional occupations) and is ordered by MSA wage rank. A color version of this figure is available online. Table 1 Description of Job Skills | Job Skills | Keywords and Phrases | |---------------------|---| | Cognitive | Problem solving, research, analytical, critical thinking, math, statistics | | Social | Communication, teamwork, collaboration, negotiation, presentation | | Character | Organized, detail oriented, multitasking, time management, meeting deadlines, energetic | | Writing | Writing | | Customer service | Customer, sales, client, patient | | Project management | Project management | | People management | Supervisory, leadership, management (not project), mentoring, staff | | Financial | Budgeting, accounting, finance, cost | | Computer (general) | Computer, spreadsheets, common software (e.g., Microsoft Excel, PowerPoint) | | | Programming language or specialized software (e.g., Java, SQL, | | Software (specific) | Python) | Note.—Shown is the authors categorization of open text fields in Burning Glass Technologies data. We categorize eight additional skill groups and show that these are important in explaining pay differentials across labor markets and performance differentials across firms. The third skill, "character," is an umbrella term for keywords and phrases such as "organized," "detail oriented," and "time management." Here we follow the large literature on noncognitive or "soft" skills, which discusses the labor market returns to personality traits, such as conscientiousness and agreeableness, as well as personal attributes, such as self-control and positive affect (e.g., Heckman and Kautz 2012). Our criteria for the other seven job skills is that they be commonly listed and generally applicable to a wide range of jobs. For example, writing, customer service, sales, and project management are among the top 15 most commonly listed text fields in BG data from 2014. We also create the skill categories "people management" and "financial" from a range of related keywords and phrases. Finally, we include categories for general and specific computer skills. BG codes these categories themselves. The former encompasses the generic phrase "computer skills" as well as key phrases for common software, such as Microsoft Excel, while the latter includes specialized software, such as SQL, Iava, and C++. To provide intuition for these job skills, table A2 shows the share of job vacancies that require each skill for selected occupations in the full sample. As can be seen, this skill demand is fairly high for cognitive, social, and character skills, which are required across a broad range of jobs. In addition, job skills line up well with occupation titles and perceived job tasks. Eighty-four percent of vacancies for accountants and auditors
require financial skills, compared with an average of only 16% across all professional occupations. Similarly, the share of computer systems analysts requiring project management skills is particularly high, as is the share of computer program- S348 Deming/Kahn mers requiring skill in a specific software program. Ads for registered nurses are more likely to specify a customer service requirement. Finally, there is a lot of variation in skill requirements even within detailed occupation categories. For example, among managers, financial manager vacancies are much more likely to require financial skills than are sales and general manager vacancies. In contrast, customer service skills are much more likely to be requested for sales managers than for the other types. Our exercise falls very much in the spirit of the task literature, which catalogs task requirements at the occupation level using the DOT or O*NET and explores variation over time or over a career (Autor et al. 2003; Poletaev and Robinson 2008; Gathmann and Schonberg 2010). In what follows, we primarily focus on cognitive skills and social skills because they are important predictors of productivity and wages in a wide variety of occupations and because of their prominence in the literature linking technological change to wage inequality (e.g., Weinberger 2014; Deming 2017). While we can show that the remaining skill measures have explanatory power in pay and performance regressions, we refrain from interpreting (or showing) the signs or magnitudes of the coefficients on the other eight job skill measures. This is because we do not have a general framework for analyzing them. Some skills may be valuable the higher the requirement, some may reflect horizontal differentiation in production or selection of workers, and others may substitute or complement each other. For example, listing "character" skills might be a signal of lower-paying jobs where obedience is required, even if character skills themselves are valuable in all jobs. We leave questions such as these for future work. ## C. Variation in Skill Requirements Table A1 provides summary statistics for these measures. Thirty-seven percent of professional jobs specify a cognitive skill requirement, and 36% specify a social requirement. A quarter of ads specify both requirements. Frequency of appearance for the other job skills ranges from one-ninth of ads (project management) to nearly a third (character and software). Skill requirements are a bit more prevalent in the firm sample, especially for ads in the Compustat-matched sample. There is also substantial variation in skill requirements across ads. Figure 2 illustrates variation in skill requirements that can be accounted for by the other characteristics found in the ads. We regress the probability that an ad posts a given skill on our most detailed set of controls: six-digit occupation, MSA, and firm fixed effects as well as education and experience requirements.¹⁷ We estimate this regression on the firm sample, which is re- ¹⁷ Education controls include an indicator for whether the ad has any education requirement and the number of years required if there is a requirement (otherwise, 0); experience controls are analogous. FIG. 2.—Variances in skill requirements. Data are based on the firm sample. We regress an indicator for whether an ad has the skill requirement on occupation (six-digit) fixed effects, additional controls (metropolitan statistical area fixed effects and education and experience requirements), and firm fixed effects. Bars plot variances of fitted values based on specified controls or the residuals. A color version of this figure is available online. stricted to firms with at least 10 ads and postings in at least two MSAs and two occupations, to limit noise in the firm fixed effects. The bottom bar (solid dark gray) plots the variance in the fitted values for the occupation fixed effects. Occupation typically accounts for a fairly small fraction of the total variance in skill requirements, between 2% and 8%, except in finance and software, where it accounts for nearly 20%. This is intuitive given the nature of the skill requirements, and it gives us confidence that our measures capture real variation in employer demands for the indicated skill. The next bar (brick pattern) plots the variance in fitted values for the remaining controls except firm effects. Controls for location and the more typical skill measures (education and experience) tend to account for roughly 15% of the total variation. This is because, as we explain below, almost all of the skill measures are positively correlated with education and experience requirements and because the skill requirements in a location tend to reflect the skill of employed workers in the location (see Hershbein and Kahn 2016). S350 Deming/Kahn The third bar (vertical line pattern) plots the variance in fitted values for the firm fixed effects. Interestingly, we find that there is substantial systematic variation across firms in their tendency to specify these skill requirements. They account for nearly 30% of the total variation for most of the skill measures. Firms clearly have large systematic differences in their recruiting strategies and possibly differences in skill utilization, even controlling for the distribution of occupations and MSAs they post in. Finally, there is substantial remaining variation across ads in the propensity to specify these skill requirements, even within this very detailed set of controls. The residual variances tend to be about half of the total variation in requirements. Table 2 presents bivariate correlations for each pair of skill requirements, weighted by ads, in the firm sample. There are two main takeaways from table 2. First, cognitive skill and social skill requirements are positively correlated with each other, with years of education and experience required, and with most of the other eight job skills. This suggests that they are general skills deemed important by employers across a wide range of occupations and labor markets. Second, the correlations between education and experience requirements and job skills are mostly positive but relatively small. This suggests that there is wide variation in employer skill demands even after accounting for education and experience requirements. #### III. Skill Demands and Worker and Firm Outcomes The goal of this paper is to understand whether pay differentials across markets and firms are associated with differences in demand for skills. In particular, are firms and markets that pay more also more likely to require employees to have cognitive skills, social skills, or both? Differences in demand for these skills and associated returns in terms of wages and firm performance may reflect variation in production technology, especially within narrowly defined occupations. Since we do not measure individual productivity or wages directly in our data set, we use three proxies. The first is the average wage in the MSA-occupation cell, obtained from OES data, which should be correlated with wages paid by firms posting ads in those same cells. The second is whether the firm is publicly traded, measured by whether we can link the firm name to Compustat. Publicly traded firms are generally larger, higher-paying, more successful firms, and we can ask whether this firm performance measure is correlated with the types of skills demanded. The third is log revenue per worker, conditional on being matched to Compustat. For this subset of firms, all of which are at least successful enough to be publicly traded, we can ask whether differences in skill demand correlate with differences in their bottom line. In thinking about the relationship between job skills and wages, a few examples may be instructive. First, consider computer programmers in Table 2 Correlations of Skill Requirements | | Education | Education Experience Cognitive Social Character | Cognitive | Social | Character | Writing | Customer
Service | Project
Mgmt | People
Mgmt | Financial | Financial Computer Software | Software | |---------------------|-----------|---|-----------|--------|-----------|---------|---------------------|-----------------|----------------|-----------|-----------------------------|----------| | Years of education | | | | | | | | | | | | | | required | 1.00 | | | | | | | | | | | | | Years of experience | | | | | | | | | | | | | | required | .30 | 1.00 | | | | | | | | | | | | Cognitive | .20 | .37 | 1.00 | | | | | | | | | | | Social | .05 | .25 | .64 | 1.00 | | | | | | | | | | Character | 06 | .14 | .59 | 69: | 1.00 | | | | | | | | | Customer service | 27 | 38 | 03 | .17 | .14 | 1.00 | | | | | | | | Writing | .12 | .24 | .57 | .52 | .52 | 07 | 1.00 | | | | | | | Project mgmt | .20 | .57 | .55 | .45 | .39 | 20 | .39 | 1.00 | | | | | | People mgmt | 05 | .01 | .35 | .34 | .38 | .13 | .30 | .27 | 1.00 | | | | | Financial | .02 | .21 | .43 | .35 | .37 | 04 | .36 | .38 | .39 | 1.00 | | | | Computer (general) | 90 | .27 | .52 | .52 | .54 | 02 | .50 | .40 | .24 | .41 | 1.00 | | | Software (specific) | .26 | .61 | .36 | .25 | .11 | 33 | .24 | .50 | 90 | .02 | .27 | 1.00 | S352 Deming/Kahn Washington, DC, versus Manchester-Nashua, New Hampshire. Hourly wages for computer programmers are about 25% higher in Washington, DC, than in New Hampshire. Thirty-five percent of computer programmer vacancies in Washington, DC, require social skills, compared with only 21% in Manchester-Nashua, and firms with computer programmer vacancies in Washington, DC, have about 10% higher revenue per worker than their New Hampshire counterparts. Hourly wages for management analysts are about 25% higher in San Jose, California, than in San Diego. Eighty-four percent of management analyst vacancies in San Jose require cognitive skills, compared with only 75% in San Diego, and firms with management analyst vacancies
in San Jose are also about 2 percentage points more likely to be publicly traded. Our hypothesis is that while most computer programmer vacancies require cognitive skills, computer programming jobs in Washington, DC, that also require social skills are performing more complex functions, perhaps strategizing with clients or overseeing coworkers, and are therefore more productive. Similarly, while all management analysts likely require social skills to interact with clients, those in San Jose may engage in more complex problem solving and analysis. These are only illustrative examples, and of course we cannot observe production technology in our data. But we find the subsequent evidence on stated preferences of firms compelling and consistent with this hypothesis. Of course, wages and job skill requirements may be correlated for a variety of reasons. Washington, DC, and San Jose are more expensive cities with more educated workers and different amenities than their counterparts. We want to understand whether the skill requirements reflect differences in how workers produce or simply pick up city- or occupation-wide differences. To that end, we estimate regressions of the following general form: $$\log(\text{Wage})_{om} = \alpha + \overline{\text{Skill}}_{om}\beta' + \text{Controls} + \epsilon_{om}. \tag{1}$$ For a six-digit SOC occupation, o, and MSA, m, we regress the mean log wage (log(Wage)) as measured by the OES on a vector of average skill requirements (Skill_{om}) of ads posted in the MSA-occupation cell in the BG data. We experiment with a few different sets of controls, always including the more standard skill measures, education and experience.¹⁸ Additional controls are added successively and are described below. All regressions ¹⁸ We control for the average years of education (experience) required in the cell as well as the share of ads with any education (experience) requirement. For MSA-occupation cells with no education (experience) requirement, the years variable is set to 0 and the share of ads with any requirement will equal 0, thus indicating this imputation. are weighted by the number of ads in each MSA-occupation cell, although results are very similar when we instead weight by employment. Table 3 presents results from estimates of equation (1) on the full sample. Column 1 summarizes a sparse model that includes the 10 skill measures and the education and experience variables. The coefficient of 0.11 on cognitive skills is statistically significant at the less than 1% level. The magnitude of the coefficient implies that a 10 percentage point increase in the share of job vacancies requiring cognitive skills is associated with 1.1% higher wages. Alternatively, a 1 standard deviation increase in the propensity to specify a cognitive skill requirement across occupation-MSA cells (0.17) increases wages by nearly 2%. We estimate that adding any cognitive skill requirement is associated with a roughly equivalent wage gain to increasing the education or experience requirement by 1 year. The coefficient on social skills is much larger in magnitude and also statistically significant at the less than 1% level. A standard deviation increase (0.12) in demand for social skill is associated with a 5% wage increase. Table 3 Average Wages and Skill Requirements | | Depender | nt Variable: | Log(Mean | Wages) in | MSA-Occuj | pation Cells | |-------------------------------------|-----------|--------------|-----------|-----------|-----------|--------------| | | (1) | (2) | (3) | (4) | (5) | (6) | | Cognitive | .113*** | 413*** | .245*** | .181*** | .0792*** | .0465*** | | | (.00908) | (.0166) | (.00784) | (.0139) | (.00873) | (.0122) | | Social | .429*** | 0919*** | .301*** | .236*** | .0517*** | .0202 | | | (.0155) | (.0206) | (.0121) | (.0167) | (.00966) | (.0127) | | Both required | | 1.319*** | | .157*** | | .0760*** | | • | | (.0349) | | (.0278) | | (.0198) | | Years of education | .131*** | .129*** | .0764*** | .0765*** | .00865*** | .00873*** | | | (.000770) | (.000763) | (.000844) | (.000844) | (.000995) | (.000995) | | Years of experience | .160*** | .161*** | .0848*** | .0849*** | .0318*** | .0318*** | | • | (.00120) | (.00118) | (.00120) | (.00120) | (.00102) | (.00102) | | Base controls | | | X | X | | | | Detailed controls | | | | | X | X | | F-statistic (cognitive | | | | | | | | and social) | 553.1 | 855.0 | 1,004 | 680.4 | 69.66 | 51.35 | | <i>F</i> -statistic (all 10 skills) | 1,874 | 2,054 | 612.6 | 560.1 | 59.93 | 55.83 | | MSA-occupation cells | 56,611 | 56,611 | 56,611 | 56,611 | 56,611 | 56,611 | | R^2 | .702 | .710 | .846 | .846 | .940 | .941 | Note.—All regressions control for the share of ads with each of the eight other job skill, education, and experience requirements. Years of education and experience equal 0 if the MSA-occupation cell has no ads that specify requirements. The dependent variable is the log of median hourly earnings in the MSA-occupation cell, obtained from Occupational Employment Statistics data. Base controls include metropolitan statistical area (MSA) characteristics from the American Community Survey, four-digit Standard Occupational Classification (SOC) occupation fixed effects, and the share of ads in the MSA-occupation cell that are in each of the two-digit North American Industry Classification System industries. Detailed controls include MSA and six-digit SOC occupation fixed effects and the industry shares. Observations are from the full sample, weighted by the number of ads in the MSA-occupation cell. See table 1 for skills definitions. S354 Deming/Kahn Column 2 adds the share of vacancies in each MSA-occupation cell with both a cognitive skill and a social skill requirement. Like Weinberger (2014) and Deming (2017), we find strong evidence of complementarity between cognitive skills and social skills. Each of the positive correlations between cognitive or social skill requirements and wages (found in col. 1) is explained by vacancies that ask for both types of skills. The coefficient implies that a 1 standard deviation increase (0.10) in the share of vacancies requiring both cognitive and social skills increases wages by 14%. Surprisingly, we find a negative wage return for ads that require only cognitive or only social skills, although this effect reverses with controls. We also report F-statistics for the cognitive and social variables (including the requirement for both in even columns) and for the full set of skills. In both columns we can strongly reject that these groups of coefficients are equal to 0 (p = .000). Columns 3 and 4 of table 3 add a base set of controls: four-digit SOC occupation fixed effects, MSA characteristics from the ACS, and the distribution of ads across two-digit North American Industry Classification System (NAICS) industries. These controls help adjust for a range of alternative explanations for the positive correlation between skill requirements and wages. First, as noted, firms may post skill requirements in cities that have more skilled workers, which may also be more expensive cities where wages are higher. Second, occupation and industry controls adjust for a range of factors, including differences in representation in online job ads, the propensity to not post requirements because skills are assumed, and the propensity to post requirements as a way of signaling something about the job other than skill utilization in production. For example, jobs for a salesperson may in general not specify a social skill requirement because it is always assumed, but within ads for salespeople the prevalence of keywords may signal a slightly different focus. Even within these controls, the pattern of results is similar to the raw correlations. While the coefficient on cognitive skill requirements increases and the coefficient on social skills decreases, both remain positive and statistically significant at the less than 1% level, and the interaction between the two skills in column 4 is also positive and statistically significant. We see positive returns for each skill individually that double when the two are required together. We can again strongly reject that the coefficients on cognitive and social skills are jointly equal to 0, and likewise for all 10 skills together (p = .000 in both cases). Columns 5 and 6 fully saturate the model, controlling for six-digit occupation fixed effects and MSA fixed effects in addition to industry shares. MSA fixed effects control for any pay differences across labor markets that are due to common factors, such as cost of living or local amenities. Even in this highly controlled specification, we can strongly reject that the coefficients on cognitive and social skills—and all skills jointly—are equal to 0 (p = .000 in both cases). Cognitive and social skill requirements are posi- tively correlated with MSA-occupation wages, with the majority of the return concentrated among ads that specify both requirements. The results in table 3 show clearly that data on the average skill requirements of jobs in local labor markets have explanatory power beyond what is available in conventional data sources. Labor markets paying relatively high wages to a particular occupation are likely to advertise for relatively higher cognitive and social skill requirements. We still find a positive return for cognitive skills, and it nearly triples when social skills are also required. It is also worth noting that the controls for the other job skills suggest that the returns to cognitive and social skills are not driven by their relative concentration in particular job types, such as managerial or finance jobs, that earn high returns. Table A3 shows that these results are very similar in the firm sample. Next we ask whether larger and more productive firms post systematically different skill requirements for the same occupations. We estimate the correlation between firm performance and skill requirements in the following
regression framework: $$Firm_perf_f = \alpha_0 + \overline{Skill_f}\beta' + \overline{I_f^o} + \overline{X_f}\gamma' + \overline{I_f^m} + \theta_n + \epsilon_f, \qquad (2)$$ where $\overline{\text{Skill}_f}$ is a vector of firm average shares of job vacancies that require each skill, \bar{I}_f^o is the share of each firm's postings belonging to each occupation code, \bar{X}_f is a vector of average education and experience requirements, \bar{I}_f^m is the share of each firm's postings belonging to each MSA or the ad-weighted average MSA characteristics of the firm, and θ_n is industry fixed effects. We weight by the share of ads posted by the firm. Table 4 presents estimates of equation (2) for both firm performance outcomes. We alternately include our base set of controls and more detailed controls, as in table 3. Columns 1–4 present results where the outcome is an indicator variable for whether the firm is publicly traded and is estimated on the firm sample. We find evidence of a positive association between being publicly traded and postings ads with cognitive skill and social skill requirements. This result holds with both the base set of controls (col. 1) and when controlling for occupation, industry, and MSA fixed effects (col. 3). The coefficients on cognitive skill requirements are positive in columns 1 and 3 but are statistically significant only when more detailed controls are included. The coefficients on social skill requirements are larger than the results for cognitive skills; moreover, they are positive and statistically significant at the less than 1% level in both specifications. In column 1, the coefficients imply that a 1 standard deviation increase in the share of vacancies with a social skill requirement (the standard deviation across firms is about 0.2 for both skills) is associated with a 3.2 percentage point increase in the probability that a company is publicly traded. This is a 10% increase relative to the baseline 30% probability that an ad is posted to a publicly traded firm. Firm Outcomes and Average Skill Requirements Table 4 | | | Publicly | Publicly Traded | | | Log(Revenue per Worker) | per Worker) | | |------------------------------------|----------|----------|-----------------|----------|----------|-------------------------|-------------|---------| | | (1) | (2) | (3) | (4) | (5) | (9) | (7) | (8) | | Cognitive | .0131 | 170*** | .0318** | 136*** | .469*** | .624*** | .379*** | .0761 | |) | (.0122) | (.0180) | (.0129) | (.0185) | (.117) | (.190) | (.136) | (.218) | | Social | .162*** | .0165 | .0934*** | 0364** | .218** | .348** | .239* | 00813 | | | (.0114) | (.0115) | (.0115) | (.0154) | (.105) | (.164) | (.123) | (.185) | | Both required | | .365*** | | .328*** | | 268 | | .531* | | 4 | | (.0262) | | (.0260) | | (.259) | | (.298) | | Years of education | 00212 | 00141 | 00242* | 00203 | .00423 | .00312 | 62600. | .00974 | | | (.00134) | (.00134) | (.00135) | (.00135) | (.0222) | (.0222) | (.0266) | (.0266) | | Years of experience | .0236*** | .0239*** | .0125*** | .0128*** | .0851*** | .0839*** | .119*** | .120*** | | | (.00150) | (.00150) | (.00157) | (.00157) | (.0144) | (.0145) | (.0182) | (.0182) | | Base controls | × | × | | | × | × | | | | Detailed controls | | | × | × | | | × | × | | F-statistic (cognitive and social) | 110.2 | 138.1 | 41.93 | 81.19 | 12.43 | 8.644 | 6.560 | 5.432 | | F-statistic (all 10 skills) | 181.6 | 183.1 | 130.3 | 133.2 | 10.96 | 10.06 | 4.072 | 3.993 | | Number of firms | 85,695 | 85,695 | 85,695 | 85,695 | 3,622 | 3,622 | 3,622 | 3,622 | | \mathbb{R}^2 | .246 | .248 | .330 | .332 | .511 | .511 | .736 | .737 | | | | | | | | | | | NOTE.—Observations are at the firm level, weighted by number of ads posted by the firm. All regressions control for the share of ads with each of the eight other job skill, education, and experience requirements. Years of education and experience equal 0 if the firm has no ads that specify requirements. In col. 1-4, the dependent variable is an indicator Columns 2 and 4 add the share of vacancies that require both types of skills. We see strong evidence of complementarity in both specifications. A 1 standard deviation increase in the probability that both skills are required (0.16) is associated with a 6 percentage point increase in the probability of being publicly traded. Note also that the social and cognitive coefficients are jointly significant, as is the full set of skill requirements. These skill measures thus add explanatory power above and beyond the typically available control variables. Columns 5–8 report results for log revenue per worker among the 3,622 firms in our data that are publicly traded. Since this restriction limits our sample to the 30% of adds that are posted by a publicly traded firm, we view these results with caution. Still, it is interesting to note that the correlation between skill requirements and revenue per worker, a proxy for firm productivity, holds even within a small sample of large, publicly traded firms. Column 5 shows that firms with higher revenue per worker also have significantly higher cognitive skill and social skill requirements. In our base specification, returns load primarily on the main effects of cognitive and social skills and not on the requirement for both (col. 6). However, with the full set of controls in col. 8, the return is entirely concentrated in ads that have a joint requirement. Again, in all specifications we can reject the hypotheses that skills are jointly equal to 0. Overall, the results in table 4 show that skill requirements are strongly correlated with proxies for firm productivity.¹⁹ In this section, we have shown that job skills have significant explanatory power for wages and firm performance above and beyond variation explained by typical controls of detailed occupation, industry, and location. Furthermore, we find evidence of a complementarity between stated preferences for cognitive and social skills in that they are positively related to pay and firm performance, especially with our strictest set of controls. Our preferred explanation is that the stated preferences indicate differences in skill utilization, perhaps indicating that some firms take better advantage of modern technologies (which may require cognitive skills, social skills, or both) and with commensurate productivity gains. Naturally, we cannot rule out that these correlations are driven by unobserved aspects of labor markets and firms. However, we add to the previous literature by showing that these positive correlations hold within a rich set of controls and, most notably, six-digit occupation fixed effects. ¹⁹ It may seem surprising that the average years of education required by the firm is not positively correlated with firm performance. However, as noted we also control for the share of ads that have any education requirement. This variable is highly correlated with the years required, since firms demanding more skilled workers are both more likely to post any requirement and also post for more years conditional on having a requirement. We find that the coefficient on the share of ads with any requirement is positive and usually highly significant even while the number of years required, conditional on any, is not. S358 Deming/Kahn ## IV. Heterogeneity across Firms and Skill Demand We have shown that jobs requiring more cognitive and social skills pay more and that firms requiring more of these skills perform better. Furthermore, the full set of job skills explains a significant amount of variation in worker pay and firm performance even when we include detailed controls for occupation, industry, and location. Variation in firm pay, controlling for worker quality, accounts for an important fraction of the rise in income inequality over the past 30 years (Card et al. 2013; Song et al. 2015; Barth et al. 2016). If firms also vary systematically in their propensity to ask for particular skills in job vacancies, then perhaps skill requirements can also account for some share of the variation in pay across firms. On the basis of the relationship between skill requirements and pay and performance established above, we can calculate how much of the variation in pay across firms can be accounted for by any variation in skill requirements. Consider equation (3), which expresses $\log(\text{Wages})$ for an occupation, o; MSA, m; and firm, f. β^f are firm fixed effects, and Controls are typical controls found in other data sets. This regression is estimated at the firm-occupation-MSA level and is weighted by the number of ads in a cell. $$\log(\text{Wages})_{omf} = \beta^f + \text{Controls} + \epsilon_{omf}. \tag{3}$$ The first column of table 5 gives a general sense of variability in log(Wages) that can be attributed to firms. Here we present the ad-weighted standard deviations of β^f in the raw data (col. 1), including our base set of controls (col. 2), and including our detailed controls (col. 3). The wage measure masks substantial heterogeneity since it simply maps MSA-occupation OES wages onto firms by taking a weighted average across markets a firm posts in. However, in row 1, column 1, we still find substantial variation across firms; a firm that pays a standard deviation higher wages pays about 21% more (0.19 log points). From column 2, we find that half of this variation remains when we include base controls. However, naturally, full controls for MSA and six-digit occupation absorb most of the variation in MSA-occupation-level wages (col. 3). This is a limitation of the fact that we cannot link wages to actual job postings. The remaining rows of table 5 summarize firm-level variation for the remaining variables, obtained by estimating equation (3) separately for each listed dependent variable. We provide standard deviations for the firm-level outcomes, although since we cannot separately identify control variables, we omit estimates in columns
2 and 3. A firm that is 1 standard deviation more likely to be publicly traded is 46 percentage points more likely to be publicly traded, while a firm with 1 standard deviation higher revenue per worker is producing about double (0.83). The table also shows variation in the average propensity to specify each job skill, and again, as noted in Section II.C, we find substantial variation | | No Controls
(1) | Base Controls
(2) | Detailed Controls
(3) | |------------------------|--------------------|----------------------|--------------------------| | Log hourly wages | .190 | .101 | .027 | | Publicly traded | .459 | | | | Log revenue per worker | .827 | | | | Cognitive | .203 | .176 | .168 | | Social | .201 | .190 | .186 | | Cognitive and social | .162 | .149 | .145 | | Character | .188 | .172 | .167 | | Customer service | .180 | .160 | .149 | | Writing | .154 | .143 | .140 | | Project management | .106 | .098 | .081 | | People management | .125 | .122 | .116 | | Financial | .141 | .101 | .091 | | Computer (general) | .185 | .168 | .163 | | Software (specific) | .244 | .172 | .136 | Table 5 Standard Deviations of Firm Effects in Outcomes and Skills Note.—We regress the variable in each row on firm fixed effects and specified controls. The table reports standard deviations of the firm fixed effects, weighted by the number of postings to each firm. Base controls include metropolitan statistical area (MSA) characteristics, four-digit occupation fixed effects, and industry fixed effects. Detailed controls include MSA, six-digit occupation, and industry fixed effects. Specifications including controls are omitted for "Publicly traded" and "Log revenue per worker," since they vary only at the firm level across firms. The standard deviation of firm effects for skill requirements is about 0.2 (20 percentage points) for both cognitive skills and social skills, and the variation shrinks only a little even after including detailed controls. The pattern is very similar for the other eight job skills, although the variation is generally smaller for most of them (especially after including detailed controls in col. 3). Thus, table 5 shows substantial heterogeneity in firm skill demands even within occupation, industry, and MSA. To illustrate the importance of employer skill demands, we combine the positive correlation between skill requirements and job outcomes shown in Section III with the variation documented in table 5 in a simple variance decomposition.²⁰ The firm fixed effects (β^f in eq. [3]) incorporate unobserved systematic differences in earnings across firms. We express these as a function of a vector of skill demands ($\overline{\text{Skill}}_f$) and a residual (ν_f) in equation (4); δ is the coefficient on the residual, and α is a vector of coefficients on the skills variables. $$\beta^f = \overline{\text{Skill}}_f \alpha' + \delta \nu_f. \tag{4}$$ ²⁰ This decomposition follows the spirit of Altonji, Kahn, and Speer (2014), who decompose variation in the returns to college major over time into changes in the returns to tasks preformed in jobs typically held by workers with a given major. S360 Deming/Kahn | | | Log(V | Wages) | | |--|------|-------|--------|------| | | (1) | (2) | (3) | (4) | | Total standard deviation of firm effect
Share attributed to skills (%): | .190 | .190 | .084 | .025 | | Total | 11.6 | 33.9 | 20.9 | 6.3 | | Social and cognitive skills | 11.6 | 5.5 | 4.7 | 1.3 | | Other skills | | 11.3 | 7.3 | .6 | | Education and experience | | 17.1 | 8.9 | 4.5 | | Residual | 88.4 | 66.1 | 79.1 | 93.7 | | Additional skills | | X | X | X | | Base controls | | | X | | | Detailed controls | | | | X | | Number of firms | | 85, | 695 | | Table 6 Decomposing Firm Effects in Wages on Skill Demands Note.—Base controls are metropolitan statistical area (MSA) characteristics and four-digit occupation fixed effects. Detailed controls are MSA and six-digit occupation fixed effects. Social and cognitive skills include requirements for each and the share of ads specifying both. Other skills include the eight additional job skills listed in table 1. Education and experience include both years required and the share of ads that have any requirement. We regress the firm fixed effect in wages on the firm fixed effect for each of the skill measures (and controls if included). We use coefficients and the variance-covariance matrix of the skills to fit the share of the variance in wages that can be attributed to various components (by fitting variances with the other coefficients set to 0). Plugging equation (4) into equation (3) yields $$\log(\text{Wages})_{omf} = \overline{\text{Skill}}_f \alpha' + \delta \nu_f + \text{Controls} + \epsilon_{omf}. \tag{5}$$ This model provides a way to decompose the variance of log wages across firms into skill requirements and other components. In particular, the variance in the firm effects, $Var(\beta^f)$, is equal to $Var(Skill_f\alpha' + \delta\nu_f)$. We can calculate the variance in β^f that is attributable to the skills variables or to a subset of the skills variables by setting the other coefficients (components of the vector α) to 0 and calculating the variance. We also use the variance-covariance matrix of the skills variables as an input. Importantly, while variation in firm fixed effects in both wages and skill requirements is in part driven by measurement error, the correlations in the vector α are unlikely to include such measurement error. We estimate equations (3)–(5) on a disaggregated MSA-occupation-firm-level data set. The results are presented in table 6. Column 1 shows a simple decomposition that includes no controls and only the social, cognitive, and combined skill measures. Column 2 adds the remaining eight job skills as well as education and experience requirements. Column 3 adds our base ²¹ For example, to understand the fraction of the variance in β^f attributed to cognitive and social skills, we calculate $Var(\overline{Skill_f}\alpha' + \delta\nu_f)$ using the estimated coefficients for cognitive social and the interaction but use a value of 0 for all other components of α and for δ . controls (excluding industry fixed effects, since those are collinear with firm fixed effects β^f), and column 4 ads detailed controls. From column 1, the total standard deviation of the firm wage effect without controls is 0.19 (the same number as in col. 1, row 1, of table 5). We find that 12% of this variation can be accounted for by variation in the propensity to list cognitive and social skill requirements and the positive wage return of these skills. The remaining 88% goes unexplained. In column 2, we also allow the remaining skill measures to account for firm-level variation in wages. When we do, we find that the share attributed to cognitive and social skills falls in half to 5.5% because these two skills are correlated with other skill measures. Education and experience requirements account for the largest fraction, 17%, while the other eight job skills account for 11%. In total, we can account for a third of the variation in raw earnings gaps across firms with these skill measures. Once we include our base controls (col. 3), the firm wage gap narrows by about half (as we saw in table 5). Also, we find that the full set of skill measures accounts for 21% of this residual variation. All of the skill measures are important in accounting for this variation, with nearly half accounted for by education and experience requirements and a third by the other eight skill measures. In both columns 2 and 3, we find that the set of 10 skills account for roughly 15% of the variation in firm pay, while cognitive and social skills account for 5%. The fourth column includes the detailed controls. As noted above, controls for MSA and six-digit occupation fixed effects absorb almost all of the variation in firm pay. This is because firm variation in our pay measure comes only from variation in the MSA-occupation cells that firms post in. As such, this exercise naturally has limitations. However, the results in table 6 show that skills measures are important in accounting for firm-level variation in these aggregated wages. This suggests that they might also be important for job-level wages. We can also conduct a form of this decomposition for the firm performance measures (table 7). These measures vary only at the firm level, so we cannot include controls. We instead estimate an analogous version of equations (3)–(5) with no controls or residuals. We can still report the fraction of the variation in performance across firms that can be attributed to variation in skill requirements. We find that the skill measures account for a modest fraction of the variation across firms in performance. The 10 skills account for 5% of the variation in the probability of being publicly traded (col. 2) and roughly 12% of the variation in log revenue per worker. For the latter, the bulk of the explanatory power comes from cognitive and social skill requirements. Education and experience requirements contribute substantial explanatory power as well. Overall, we can account for 13% and 20% of the variation in whether a firm is publicly traded and log revenue per worker, respectively, with the S362 Deming/Kahn Table 7 Decomposing Firm Performance Outcomes on Skill Demands | | Publicl | y Traded | Log(Revenue | e per Worker) | |---|---------|----------|-------------|---------------| | | (1) | (2) | (3) | (4) | | Total standard deviation of firm effect Share attributed to skills (%): | .459 | .459 | .685 | .685 | | Total | 7.2 | 13.2 | 14.8 | 21.4 | | Social and cognitive skills | 7.2 | 1.7 | 14.8 | 9.4 | | Other skills | | 3.8 | | 3.1 | | Education and experience | | 7.7 | | 8.9 | |
Residual | 92.8 | 86.8 | 85.2 | 78.6 | | Additional skills | | X | | X | | Number of firms | 85 | ,695 | 3,6 | 522 | Note.—See table 6. full set of 10 skills and the more standard education and experience requirements. This exercise is only illustrative since we do not have ad-level variation in wages or productivity. However, we still find that firms vary widely in both wages (as measured by average wages in the markets they post ads in) and performance outcomes. In addition, we find that firm-level variation in demand for the job skills explains substantial fractions of firm-level variation in these outcomes. Cognitive and social skill requirements alone account for about 5% of the variation in log(Wages) and 10% of the variation in log(Revenue per Worker). These results suggest that the job skill measures we introduce in this paper provide useful information about the variation in skill utilization across firms and why they have diverse outcomes. #### V. Conclusion In this paper, we use data from online job vacancies posted in the United States between 2010 and 2015 to study heterogeneity in employer skill demands. We use keywords and phrases from the actual text of job vacancies to form measures of 10 distinct job skills, such as cognitive skills, social skills, management, and finance. We show that the prevalence of advertisements for high-level job skills is positively correlated with relative wages across labor markets and performance differences across firms, even after controlling for education and experience requirements and detailed occupation and industry codes. This suggests that our measures of job skills add explanatory power beyond what is available in typical labor market data. Using a simple decomposition, we show that variation in these 10 skill requirements can explain about 12% of the variance in wages across firms (as measured by average wages in the MSA occupations they tend to post in) after residualizing on occupation fixed effects and MSA characteristics. These skills account for between 5% and 12% of the variance in firm productivity in our sample. Turning to specific job skills, we find consistent evidence that higher-paying labor markets and firms demand higher levels of cognitive skills and social skills from their employees. Moreover, we find particularly large correlations between wages and whether a job vacancy requires both types of skill. This is consistent with recent theory and evidence from Weinberger (2014) and Deming (2017), who focus on the growing importance of social skills and growing complementarity between cognitive skills and social skills in the labor market. We also find that more productive firms—as measured by log revenue per worker as well as whether the firm is publicly traded—have greater demand for cognitive skills and social skills even after controlling for a detailed set of job characteristics, such as industry and occupation. Our decomposition shows that cognitive and social skill requirements, in particular, account for 5% of residual variation in wages and between 2% and 9% of variation in firm productivity. Rising variation in pay across firms, holding constant the quality of workers they employ, has been shown to be a primary contributor of rising wage inequality (Card et al. 2013; Song et al. 2015; Barth et al. 2016). Our results show that some of the variation in pay across firms in the cross section can be accounted for by variation in demand for cognitive and social skills. We cannot measure production technologies directly in the BG data, nor do we have variation in skill demands over a long time horizon. However, by linking variation in pay in the cross section to tasks that are most associated with rising inequality over time, we hope to provide suggestive evidence on this front. Our results are consistent with at least some of the rise in inequality across firms being driven by a differential ability to adopt better production technologies that are more complementary with machines. More generally, this paper demonstrates the usefulness of job vacancy data for studying employer skill demands and relative wages across labor markets and occupations. Future work could pair job vacancy data with detailed information about firm characteristics and production technology. This would enable researchers to study changes in the returns to specific skill requirements with a better understanding of how heterogeneity in skill demands translates to firm production technology. # Appendix Table A1 Summary Statistics | , | | A. Full | A. Full Sample | | | B. Firm Sample | Sample | | Ü | C. Compustat Matched | at Matcho | - pa | |--------------------------------------|-------|---------|----------------|-----|-------|----------------|--------|-----|-------|----------------------|-----------|-------| | | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | | Share of ads with skill requirement: | | | | | | | | | | | | | | Cognitive | .370 | .170 | 0 | 1 | .418 | .203 | 0 | 1 | .487 | .173 | 0 | _ | | Social | .363 | .120 | 0 | 1 | .422 | .201 | 0 | 1 | .501 | .172 | 0 | _ | | Cognitive and social | .206 | 660: | 0 | 1 | .249 | .162 | 0 | 1 | .311 | .152 | 0 | _ | | Character | .299 | .123 | 0 | 1 | .344 | .188 | 0 | 1 | .411 | .154 | 0 | 1 | | Writing | .200 | .095 | 0 | 1 | .229 | .154 | 0 | 1 | .258 | .132 | 0 | 66. | | Customer service | .197 | .142 | 0 | 1 | .236 | .180 | 0 | 1 | .260 | .154 | 0 | _ | | Project management | .117 | .122 | 0 | 1 | .130 | .106 | 0 | 1 | .162 | .094 | 0 | .81 | | People management | .151 | .095 | 0 | 1 | .184 | .125 | 0 | 1 | .212 | .110 | 0 | .92 | | Financial | .157 | .192 | 0 | 1 | .165 | .141 | 0 | 1 | .196 | .120 | 0 | 66. | | Computer (general) | .288 | .135 | 0 | | .316 | .185 | 0 | 1 | .370 | .155 | 0 | 1 | | Software (specific) | .319 | .279 | 0 | 1 | .316 | .244 | 0 | 1 | .354 | .205 | 0 | 1 | | Education | .588 | .161 | 0 | 1 | 629. | .218 | 0 | 1 | .721 | .168 | 0 | 1 | | Experience | .578 | .131 | 0 | 1 | .623 | .201 | 0 | 1 | .671 | .170 | 0 | 1 | | Years of school, conditional | 15.74 | 1.35 | 12 | 21 | 15.66 | .92 | 12 | 21 | 15.59 | .75 | 12 | 19.22 | | Years of experience, conditional | 4.10 | 1.31 | 80. | 15 | 4.14 | 1.49 | 80. | 15 | 4.57 | 1.39 | .31 | 10.80 | | MSA-occupation median wage
Publicly traded | 41.97 | 41.97 15.60 8.15 135.00 | 8.15 | 135.00 | 42.21 | 7.26 | 7.26 11.96 .459 0 | 107.95 | 43.74 | 6.17 | 6.17 17.71 .000 .000 | 77.06 | |--|--------------------------|-------------------------|-----------|---------------------------------|--------------|---------------|-------------------|-----------------------------|----------------------------|--------------------------------|----------------------|----------------------| | Revenue per worker (\$ millions) | | 2 | < | | .473 | 3.329 | 000. | 562 | .473 | 3.329 | 000. | 562 | | Number of occupations posted in | | NA | ď | | 98.22 | 59.45 | 1 | 246 | 133.95 | 50.08 | 2 | 228 | | Number of MSAs posted in | | | | | 106.19 | 101.75 | 1 | 370 | 172.82 | 104.13 | 1 | 354 | | Number of MSA-occupation cells | | 56,611 | 111 | | | 55,241 | 41 | | | 45,154 | 54 | | | Number of ads per MSA-occupation | | | | | | | | | | | | | | cell (unweighted) | 793 | 4,911 1 | 1 | 351,149 | 467 | 2,862 1 | 1 | 177,690 | 173 | 1,063 | 1 | 59,501 | | Number of firm cells | | | | | | 85,695 | 95 | | | 3,622 | 22 | | | Number of ads per firm | | | | | | | | | | | | | | cell (unweighted) | | | | | 301 | 246 | 246 1 | 254,518 | 254,518 2,138 | 8,519 5 | 5 | 162,640 | | Number of ads, total | | 44,891,978 | 8/6,1 | | | 25,803,549 | ,549 | | | 7,743,967 | 296, | | | NOTE.—Panel A includes professional Burning Glass Technologies (BG) ads from 2010 to 2015. Panel B is restricted to ads with nonmissing firms that post at least 10 ads in the sample as a whole and ads in at least two MSAs and two occupations. Panel C is restricted to firms that can be marched to Compustat. Summary statistics are weighted by number of | urning Gla
SAs and tw | ss Technolog | gies (BG) |) ads from 20
C is restricte | 310 to 2015. | Panel B is re | estricted to | ads with no
Compustat. S | nmissing fir
ummary sta | ms that post
tistics are we | at least 10 | ads in the number of | ads, unless otherwise noted. Skill requirements come from BG data; see table 1 for descriptions. Median wage (from the Occupational Employment Statistics) and revenue per worker (from Compustat) are the average from 2010 to 2015 in the MSA-occupation or firm cell, respectively. NA = not applicable. Table A2 Skill Requirements for Selected Occupations | | | | | | 3 qof | Job Skills | | | | | |---|-----------|--------|------------------|---------|---------------------|-----------------|----------------|-----------|--------------------|----------| | | Cognitive | Social | Social Character | Writing | Customer
Service | Project
Mgmt | People
Mgmt | Financial | Financial Computer | Software | | Occupation (SOC, six digit): | | | | | | | | | | | | Accountants and auditors | .46 | .33 | .35 | .22 | 80. | .07 | .15 | .84 | 4. | .31 | | Computer programmers | .42 | .33 | .21 | .21 | .13 | .12 | .11 | .05 | .27 | .82 | | Computer user support specialists | .37 | .38 | .31 | .20 | .33 | .07 | 60: | 40. | .57 | .45 | | Computer and information systems analysts | 74. | .48 | .42 | .23 | .20 | .34 | .35 | .27 | .30 | .56 | | Financial analysts | 88. | .45 | 44. | .22 | 60. | 60. | 80. | .84 | .58 | .37 | | Managers, financial | .51 | .42 | .39 | .21 | .23 | .10 | .32 | 99. | .35 | .21 | | Managers, general
operations | 4. | .43 | .42 | .21 | .21 | .12 | .38 | .32 | .30 | .13 | | Managers, sales | .33 | .49 | .39 | .19 | .70 | .07 | .25 | .18 | .30 | .11 | | Lawyers | .31 | .29 | .21 | .25 | .07 | .04 | 60: | .12 | .12 | .05 | | Loan officers | .32 | .42 | .36 | .30 | .41 | .01 | .10 | .28 | .38 | 90. | | Management analysts | .83 | .47 | .41 | .30 | .14 | .27 | .16 | .24 | .38 | .40 | | Registered nurses | .19 | .25 | .15 | .07 | .38 | 0. | .11 | .02 | .11 | .03 | | Overall professional occupation average | .37 | .36 | .30 | .20 | .20 | .12 | .15 | .16 | .29 | .32 | NOTE.—Postings-weighted averages are based on our full sample of Burning Glass Technologies professional ads. See table 1 for definitions of job skills. | | Depender | nt Variable: | Log(Mean | Wages) in | MSA-Occup | pation Cells | |-------------------------------------|-----------|--------------|-----------|-----------|-----------|--------------| | | (1) | (2) | (3) | (4) | (5) | (6) | | Cognitive | .123*** | 299*** | .164*** | .150*** | .0471*** | .0286*** | | - | (.00886) | (.0155) | (.00749) | (.0125) | (.00704) | (.00994) | | Social | .300*** | 0788*** | .144*** | .132*** | .0333*** | .0167* | | | (.0127) | (.0170) | (.00995) | (.0135) | (.00749) | (.00980) | | Both required | | .945*** | | .0288 | | .0402*** | | _ | | (.0286) | | (.0220) | | (.0153) | | Years of education | .125*** | .123*** | .0580*** | .0580*** | .00486*** | .00490*** | | | (.000795) | (.000790) | (.000840) | (.000841) | (.000836) | (.000836) | | Years of experience | .165*** | .167*** | .0620*** | .0620*** | .0208*** | .0208*** | | _ | (.00114) | (.00113) | (.00120) | (.00120) | (.000957) | (.000957) | | Base controls | | | X | X | | | | Detailed controls | | | | | X | X | | F-statistic (cognitive | | | | | | | | and social) | 450.8 | 669.5 | 418.2 | 279.4 | 41.01 | 29.63 | | <i>F</i> -statistic (all 10 skills) | 2,073 | 2,218 | 406.8 | 369.9 | 30.45 | 28.31 | | MSA-occupation cells | 55,241 | 55,241 | 55,241 | 55,241 | 55,241 | 55,241 | | R^2 | .696 | .701 | .856 | .856 | .943 | .943 | Table A3 Average Wages and Skill Requirements—Firm Sample Note.—See tables 1 and 3. Observations are from the firm sample. MSA = metropolitan statistical area. * p < .1. *** p < .01. #### References Acemoglu, D., and D. Autor. 2011. Skills, tasks and technologies: Implications for employment and earnings. In *Handbook of labor economics*, ed. David Card and Orley Ashenfelter, vol. 4B, 1043–1171. Amsterdam: Elsevier. Altonji, Joseph G., Lisa B. Kahn, and Jamin D. Speer. 2014. Trends in earnings differentials across college majors and the changing task composition of jobs. *American Economic Review Papers and Proceedings* 104, no. 5: 387–93. Autor, David H. 2014. Polanyi's paradox and the shape of employment growth. NBER Working Paper no. 20485, National Bureau of Economic Research, Cambridge, MA. Autor, David H., and David Dorn. 2013. The growth of low-skill service jobs and the polarization of the US labor market. *American Economic Review* 103, no. 5:1553–97. Autor, David H., Lawrence F. Katz, and Melissa S. Kearney. 2008. Trends in US wage inequality: Revising the revisionists. *Review of Economics and Statistics* 90, no. 2:300–323. Autor, David H., Frank Levy, and Richard J. Murnane. 2003. The skill content of recent technological change: An empirical exploration. *Quarterly Journal of Economics* 118, no. 4:1279–1333. S368 Deming/Kahn Barth, Erling, Alex Bryson, James C. Davis, and Richard Freeman. 2016. It's where you work: Increases in the dispersion of earnings across establishments and individuals in the United States. *Journal of Labor Economics* 34, no. 2, suppl. (April): S67–S97. - Beaudry, Paul, David A. Green, and Benjamin M. Sand. 2016. The great reversal in the demand for skill and cognitive tasks. *Journal of Labor Economics* 34, no. 2, suppl. (April): S199–S247. - Bloom, Nicholas, and John Van Reenen. 2007. Measuring and explaining management practices across firms and countries. *Quarterly Journal of Economics* 122, no. 4:1351–1408. - Borghans, Lex, Bas ter Weel, and Bruce A. Weinberg. 2014. People skills and the labor-market outcomes of underrepresented groups. *Industrial and Labor Relations Review* 67, no. 2:287–334. - Brynjolfsson, Erik, and Andrew McAfee. 2014. The second machine age: Work, progress and prosperity in a time of brilliant technologies. New York: Norton. - Card, David, Jörg Heining, and Patrick Kline. 2013. Workplace heterogeneity and the rise of West German wage inequality. *Quarterly Journal of Economics* 128, no. 3:967–1015. - Carnevale, Anthony P., Tamara Jayasundera, and Dmitri Repnikov. 2014. Understanding online jobs data: A technical report. Washington, DC: Georgetown University Center on Education and the Workforce. - Deming, David J. 2017. The growing importance of social skills in the labor market. *Quarterly Journal of Economics* 132, no. 4:1593–640. - Diamond, Rebecca. 2016. The determinants and welfare implications of US workers' diverging location choices by skill: 1980–2000. *American Economic Review* 106, no. 3:479–524. - Firpo, Sergio, Nicole M. Fortin, and Thomas Lemieux. 2009. Unconditional quantile regressions. *Econometrica* 77 (May): 953–73. - Gathmann, Christina, and Uta Schonberg. 2010. How general is human capital? A task-based approach. *Journal of Labor Economics* 28, no. 1: 1–49. - Glaeser, Edward, and Joshua D. Gottlieb. 2009. The wealth of cities: Agglomeration economies and spatial equilibrium in the United States. *Journal of Economic Literature* 47, no. 4:983–1028. - Goos, M., A. Manning, and A. Salomons. 2014. Explaining job polarization: Routine-biased technological change and offshoring. *American Economic Review* 104, no. 8:2509–26. - Heckman, James J., and Tim Klautz. 2012. Hard evidence on soft skills. *Labour Economics* 19, no. 4:451–64. - Hershbein, Brad, and Lisa B. Kahn. 2016. Do recessions accelerate routine-biased technological change. NBER Working Paper no. 22762, National Bureau of Economic Research, Cambridge, MA. - Ichniowski, Casey, Kathryn Shaw, and Giovanna Prennushi. 1997. The effects of human resource management practices on productivity. *American Economic Review* 87, no. 3:291–313. - Kuhn, Peter, and Kailing Shen. 2013. Gender discrimination in job ads: Evidence from China. *Quarterly Journal of Economics* 128, no. 1:287–336. - Lu, Qian. 2015. The end of polarization? Technological change and employment in the U.S. labor market. Unpublished manuscript. - Marinescu, Ioana. 2017. The general equilibrium impacts of unemployment insurance: Evidence from a large online job board. *Journal of Public Economics*, vol. 150:14–29. - Marinescu, Ioana, and Ronald Wolthoff. 2016. Opening the black box of the matching function: the power of words. Unpublished manuscript. - Moretti, Enrico. 2013. Real wage inequality. *American Economic Journal: Applied Economics* 5, no. 1:65–103. - Poletaev, Maxim, and Chris Robinson. 2008. Human capital specificity: Evidence from the Dictionary of Occupational Titles and displaced worker surveys, 1984–2000. *Journal of Labor Economics* 26, no. 3:387–420. - Sasser Modestino, Alicia, Daniel Shoag, and Joshua Ballance. 2016. Upskilling: Do employers demand greater skill when workers are plentiful? Unpublished manuscript. - Song, Jae, David J. Price, Fatih Guvenen, Nicholas Bloom, and Till von Wachter. 2015. Firming up inequality. NBER Working Paper no. 21199, National Bureau of Economic Research, Cambridge, MA. - Speer, Jamin D. 2017. Pre-market skills, occupational choice, and career progression. *Journal of Human Resources* 52, no. 1:187–246. - Weinberger, Catherine J. 2014. The increasing complementarity between cognitive and social skills. *Review of Economics and Statistics* 96, no. 4: 849–61.